eSiBayes
An eScience infrastructure for Bayesian inverse modeling
FPGAs excel in performing simple operations on high-speed streaming data, at high (energy) efficiency. However, so far, their difficult programming model and poor floating-point support prevented a wide
adoption for typical HPC applications. This is changing, due to recent and near-future FPGA technology developments: support for the high-level OpenCL programming language, hard floating-point units, and
tight integration with (Xeon) CPU cores. Combined, these are game changers: they dramatically reduce development times and allow using FPGAs for applications that were previously deemed too complex.
Another technology advance, 3D XPoint memory, allows new ways to deal with large amounts of data. Together, these developments will have disruptive impact on tomorrow’s data centers, and blur borders
between embedded computing and HPC.
With support from Intel, we will explore these disruptive technologies in critical parts of radioastronomical processing pipelines, so that they can be applied in future and upgraded telescopes. These
should lead to shorter development times, more performance, higher energy efficiency, lower costs, lower risks, and eventually more astronomical science.
Image: Peter Gerdes – Telescope Dwingeloo (CC License)
An eScience infrastructure for Bayesian inverse modeling
Using point clouds to their full potential
An architecture for real Time big data processing for AMBER
Approaches for radio telescope system health management